Wave Dispersion in High - Rise Buildings due to Soil - Structure Interaction
نویسندگان
چکیده
Nonparametric techniques for estimation of wave dispersion in buildings by seismic interferometry are applied to a simple model of a soil-structure interaction (SSI) system with coupled horizontal and rocking response. The system consists of a viscously damped shearbeam, representing a building, on a rigid foundation embedded in a half-space. The analysis shows that (1) wave propagation through the system is dispersive. The dispersion is characterized by lower phase velocity (softening) in the band containing the fundamental system mode of vibration, and little change in the higher frequency bands, relative to the building shear wave velocity. This mirrors its well known effect on the frequencies of vibration, i.e. reduction for the fundamental mode (softening) and no significant change for the higher modes of vibration, in agreement with the duality of the wave and vibrational nature of structural response. Nevertheless, the phase velocity identified from broader band IRFs is very close to the superstructure shear wave velocity, as found by the earlier study. The analysis reveals that (2) the reason for this apparent paradox is that the latter estimates are biased towards the higher values, representative of the higher frequencies in the band, where the response is less affected by SSI. It is also discussed that (3) bending flexibility and soil flexibility produce similar effects on the phase velocities and frequencies of vibration of a building. 1 Ph.D. Candidate, University of Southern California, Dept. of Civil Eng., Los Angeles, CA 90089-2531, Email: [email protected] 2 Ph.D. Candidate, University of Southern California, Dept. of Civil Eng., Los Angeles, CA 90089-2531, Email: [email protected] 3 Research Professor, University of Southern California, Dept. of Civil Eng., Los Angeles, CA 90089-2531, Email: [email protected] Earthquake Engineering and Structural Dynamics. DOI: 10.1002/eqe.2454, Final Draft. First published online on June 23, 2014, in press Article available at: http://onlinelibrary.wiley.com/doi/10.1002/eqe.2454/abstract.
منابع مشابه
OPTIMIZATION OF TMD PARAMETERS FOR EARTHQUAKE VIBRATIONS OF TALL BUILDINGS INCLUDING SOIL STRUCTURE INTERACTION
This paper investigates the optimized parameters of Tuned Mass Dampers (TMDs) for high-rise structures considering Soil Structure Interaction (SSI) effects. Three optimization methods, namely the ant colony optimization (ACO) technique together with artificial bee colony (ABC) and shuffled complex evolution (SCE) methods are utilized for the optimization of TMD Mass, damping coefficient and spr...
متن کاملTuned Mass Dampers for Earthquake Vibrations of High-rise Buildings using Bee Colony Optimization Technique
This paper investigates the application of Artificial Bee Colony (ABC) method for the optimization of Tuned Mass Dampers (TMDs) employed for high-rise structures including Soil Structure Interaction (SSI). The model is a 40-story building, and Newmark method is utilized for the structure response to Bam earthquake data. The objective is to decrease both maximum displacement and accelerati...
متن کاملEffects of Multiple Structure-soil-structure Interactions Considering the Earthquake Waveform and Structures Elevation Effects
The simultaneous effects of soil and existing structures are known as the site-city interaction (structure-soil-structure). The impact of site-city interaction on structure behavior is effective. Thus, this interaction in some regions decreases the responses while increases in other areas. In addition, the site-city interaction of many parameters including the soil type, density rate, height of...
متن کاملTorsion Effect on the RC Structures using Fragility Curves Concerning Soil-Structure Interaction
The existence of torsion, as well as consideration of the Soil-Structure Interaction (SSI), increase the natural periods of the structure resulting from a subsequent decrease in the seismic demand of the system. This paper summarizes the probabilistic assessment for evaluation of collapse fragility curves in concrete moment resisting structure with different mass center eccentricities. A 12-sto...
متن کاملSeismic Behavior and Dissipated Plastic Energy of Performance-Based-Designed High-Rise Concrete Structures with Considering Soil–Structure Interaction Effect
Since the structure and foundation are built on soil, the soil is the major platform by which seismic vibrations are transmitted to the structure, and has noticeable effects on the response and behavior of structure during earthquakes. In this research, the recently introduced Performance-based plastic design (PBPD) and its modified Performance-based plastic design (MPBPD) method in which soil ...
متن کامل